47 research outputs found

    Learning a second language in adulthood changes subcortical neural encoding

    Get PDF
    Second language learning has been shown to impact and reshape the central nervous system, anatomically and functionally. Most of the studies on second language learning and neuroplasticity have been focused on cortical areas, whereas the subcortical neural encoding mechanism and its relationship with L2 learning have not been examined extensively. The purpose of this study was to utilize frequency-following response (FFR) to examine if and how learning a tonal language in adulthood changes the subcortical neural encoding in hearing adults. Three groups of subjects were recruited: native speakers of Mandarin Chinese (native speakers (NS)), learners of the language (L2 learners), and those with no experience (native speakers of foreign languages (NSFL)). It is hypothesized that differences would exist in FFRs obtained from the three language experience groups. Results revealed that FFRs obtained from L2 learners were found to be more robust than the NSFL group, yet not on a par with the NS group. Such results may suggest that in human adulthood, subcortical neural encoding ability may be trainable with the acquisition of a new language and that neuroplasticity at the brainstem level can indeed be influenced by L2 learning

    Expanding Opportunities for Single Parents through Housing. Guidelines for New and Existing Housing and Neighborhoods that Meet the Needs of Single-Parent Families.

    Get PDF
    Supported by the Center for Urban and Regional Affairs, University of Minnesota, and the Minnesota Association of Women in Housing

    Patency of arterial repairs from wartime extremity vascular injuries

    Get PDF
    Background: Extremity vascular injury (EVI) causes significant disability in Veterans of the Afghanistan/Iraq conflicts. Advancements in acute trauma care improved survival and decreased amputations. The study of wartime EVI has relied on successful limb salvage as a surrogate for vascular repair. We used imaging studies as a specific measure of arterial repair durability. Methods: Service members with EVI were identified using the Department of Defense Trauma Registry and validated by chart abstraction. Inclusion criteria for the arterial patency subgroup included an initial repair attempt with subsequent imaging reports (duplex ultrasound, CT angiography, and angiogram) documenting initial patency. Results: The cohort of 527 included 140 Veterans with available imaging studies for 143 arterial repairs; median follow-up from injury time to last available imaging study was 19 months (Q1-Q3: 3-58; range: 1-175). Injury mechanism was predominantly explosions (52%) and gunshot wounds (42%). Of the 143 arterial repairs, 81% were vein grafts. Eight repairs were occluded, replaced or included in extremity amputations. One upper extremity and three transtibial late amputations were performed for chronic pain and poor function averaging 27 months (SD: 4; range: 24-32). Kaplan-Meier analysis estimated patency rates of 99%, 97%, 95%, 91% and 91% at 3, 6, 12, 24, and 36 months, respectively, with similar results for upper and lower extremity repairs. Explosive and gunshot wound injury mechanisms had similar patency rates and upper extremity injuries repaired with vein grafts had increased patency. Conclusions: Arterial repair mid-term patency in combat-related extremity injuries is excellent based on imaging studies for 143 repairs. Assertive attempts at acute limb salvage and vascular repair are justified with decisions for amputation versus limb salvage based on the overall condition of the patient and degree of concomitant nerve, orthopedic and soft tissue injuries rather than the presence of arterial injuries. Level of evidence: Therapeutic/care management, level IV

    Compression effects in relativistic nucleus-nucleus collisions

    Get PDF
    The negative-pion multiplicity is measured for central collisions of 40Ar with KCl at eight energies from 0.36 to 1.8 GeV/nucleon and for 4He on KCl and 40Ar on BaI2 at 977 and 772 MeV/nucleon, respectively. A systematic discrepancy with a cascade-model calculation which fits proton- and pion-nucleus cross sections but omits potential-energy effects is used to derive the energy going into bulk compression of the system. A value of the incompressibility constant of K=240 MeV is extracted in a parabolic form of the nuclear-matter equation of state

    Highlights From the Annual Meeting of the American Epilepsy Society 2022

    Get PDF
    With more than 6000 attendees between in-person and virtual offerings, the American Epilepsy Society Meeting 2022 in Nashville, felt as busy as in prepandemic times. An ever-growing number of physicians, scientists, and allied health professionals gathered to learn a variety of topics about epilepsy. The program was carefully tailored to meet the needs of professionals with different interests and career stages. This article summarizes the different symposia presented at the meeting. Basic science lectures addressed the primary elements of seizure generation and pathophysiology of epilepsy in different disease states. Scientists congregated to learn about anti-seizure medications, mechanisms of action, and new tools to treat epilepsy including surgery and neurostimulation. Some symposia were also dedicated to discuss epilepsy comorbidities and practical issues regarding epilepsy care. An increasing number of patient advocates discussing their stories were intertwined within scientific activities. Many smaller group sessions targeted more specific topics to encourage member participation, including Special Interest Groups, Investigator, and Skills Workshops. Special lectures included the renown Hoyer and Lombroso, an ILAE/IBE joint session, a spotlight on the impact of Dobbs v. Jackson on reproductive health in epilepsy, and a joint session with the NAEC on coding and reimbursement policies. The hot topics symposium was focused on traumatic brain injury and post-traumatic epilepsy. A balanced collaboration with the industry allowed presentations of the latest pharmaceutical and engineering advances in satellite symposia

    Case Reports1. A Late Presentation of Loeys-Dietz Syndrome: Beware of TGFβ Receptor Mutations in Benign Joint Hypermobility

    Get PDF
    Background: Thoracic aortic aneurysms (TAA) and dissections are not uncommon causes of sudden death in young adults. Loeys-Dietz syndrome (LDS) is a rare, recently described, autosomal dominant, connective tissue disease characterized by aggressive arterial aneurysms, resulting from mutations in the transforming growth factor beta (TGFβ) receptor genes TGFBR1 and TGFBR2. Mean age at death is 26.1 years, most often due to aortic dissection. We report an unusually late presentation of LDS, diagnosed following elective surgery in a female with a long history of joint hypermobility. Methods: A 51-year-old Caucasian lady complained of chest pain and headache following a dural leak from spinal anaesthesia for an elective ankle arthroscopy. CT scan and echocardiography demonstrated a dilated aortic root and significant aortic regurgitation. MRA demonstrated aortic tortuosity, an infrarenal aortic aneurysm and aneurysms in the left renal and right internal mammary arteries. She underwent aortic root repair and aortic valve replacement. She had a background of long-standing joint pains secondary to hypermobility, easy bruising, unusual fracture susceptibility and mild bronchiectasis. She had one healthy child age 32, after which she suffered a uterine prolapse. Examination revealed mild Marfanoid features. Uvula, skin and ophthalmological examination was normal. Results: Fibrillin-1 testing for Marfan syndrome (MFS) was negative. Detection of a c.1270G > C (p.Gly424Arg) TGFBR2 mutation confirmed the diagnosis of LDS. Losartan was started for vascular protection. Conclusions: LDS is a severe inherited vasculopathy that usually presents in childhood. It is characterized by aortic root dilatation and ascending aneurysms. There is a higher risk of aortic dissection compared with MFS. Clinical features overlap with MFS and Ehlers Danlos syndrome Type IV, but differentiating dysmorphogenic features include ocular hypertelorism, bifid uvula and cleft palate. Echocardiography and MRA or CT scanning from head to pelvis is recommended to establish the extent of vascular involvement. Management involves early surgical intervention, including early valve-sparing aortic root replacement, genetic counselling and close monitoring in pregnancy. Despite being caused by loss of function mutations in either TGFβ receptor, paradoxical activation of TGFβ signalling is seen, suggesting that TGFβ antagonism may confer disease modifying effects similar to those observed in MFS. TGFβ antagonism can be achieved with angiotensin antagonists, such as Losartan, which is able to delay aortic aneurysm development in preclinical models and in patients with MFS. Our case emphasizes the importance of timely recognition of vasculopathy syndromes in patients with hypermobility and the need for early surgical intervention. It also highlights their heterogeneity and the potential for late presentation. Disclosures: The authors have declared no conflicts of interes

    Identification of 12 new susceptibility loci for different histotypes of epithelial ovarian cancer.

    Get PDF
    To identify common alleles associated with different histotypes of epithelial ovarian cancer (EOC), we pooled data from multiple genome-wide genotyping projects totaling 25,509 EOC cases and 40,941 controls. We identified nine new susceptibility loci for different EOC histotypes: six for serous EOC histotypes (3q28, 4q32.3, 8q21.11, 10q24.33, 18q11.2 and 22q12.1), two for mucinous EOC (3q22.3 and 9q31.1) and one for endometrioid EOC (5q12.3). We then performed meta-analysis on the results for high-grade serous ovarian cancer with the results from analysis of 31,448 BRCA1 and BRCA2 mutation carriers, including 3,887 mutation carriers with EOC. This identified three additional susceptibility loci at 2q13, 8q24.1 and 12q24.31. Integrated analyses of genes and regulatory biofeatures at each locus predicted candidate susceptibility genes, including OBFC1, a new candidate susceptibility gene for low-grade and borderline serous EOC

    Genetic mechanisms of critical illness in COVID-19.

    Get PDF
    Host-mediated lung inflammation is present1, and drives mortality2, in the critical illness caused by coronavirus disease 2019 (COVID-19). Host genetic variants associated with critical illness may identify mechanistic targets for therapeutic development3. Here we report the results of the GenOMICC (Genetics Of Mortality In Critical Care) genome-wide association study in 2,244 critically ill patients with COVID-19 from 208 UK intensive care units. We have identified and replicated the following new genome-wide significant associations: on chromosome 12q24.13 (rs10735079, P = 1.65 × 10-8) in a gene cluster that encodes antiviral restriction enzyme activators (OAS1, OAS2 and OAS3); on chromosome 19p13.2 (rs74956615, P = 2.3 × 10-8) near the gene that encodes tyrosine kinase 2 (TYK2); on chromosome 19p13.3 (rs2109069, P = 3.98 ×  10-12) within the gene that encodes dipeptidyl peptidase 9 (DPP9); and on chromosome 21q22.1 (rs2236757, P = 4.99 × 10-8) in the interferon receptor gene IFNAR2. We identified potential targets for repurposing of licensed medications: using Mendelian randomization, we found evidence that low expression of IFNAR2, or high expression of TYK2, are associated with life-threatening disease; and transcriptome-wide association in lung tissue revealed that high expression of the monocyte-macrophage chemotactic receptor CCR2 is associated with severe COVID-19. Our results identify robust genetic signals relating to key host antiviral defence mechanisms and mediators of inflammatory organ damage in COVID-19. Both mechanisms may be amenable to targeted treatment with existing drugs. However, large-scale randomized clinical trials will be essential before any change to clinical practice
    corecore